Monday, August 6, 2007

2-Stroke Cycles

By Mary Long

The two-stroke cycle of and internal combustion engine iffers from the more common four stroke cycle by completing the same four processes (intake, compression, power, exhaust) in only two strokes of the piston rather than four. This is accomplished by using the space below the piston for air intake and compression, thus allowing the chamber above the piston to be used for just the power and exhaust strokes. This causes there to be a power stroke for every revolution of the crank, instead of every second revolution as in a four-stroke engine. For this reason, two-stroke engines provide high specific power, so they are valued for use in portable, lightweight applications. On the other hand, large two stroke diesels have been in use in industry (i.e., locomotive engines) since the early twentieth century.

Power/exhaust: This stroke occurs immediately after the ignition of the charge. The piston is forced down. After a certain point, the top of the piston passes the exhaust port, and most of the pressurized exhaust gases escape. As the piston continues down, it compresses the air/fuel/oil mixture in the crankcase. Once the top of the piston passes the transfer port, the compressed charge enters the cylinder from the crankcase and any remaining exhaust is forced out.
Compression/intake: The air-fuel-oil mixture has entered the cylinder, and the piston begins to move up. This compresses the charge in the cylinder and draws a vacuum in the crankcase, pulling in more air, fuel, and oil from the carburetor. The compressed charge is ignited by the spark plug, and the cycle begins again.

In engines like the one described above, where some of the exhaust and intake charge are in the cylinder simultaneously the gasses are kept separate by careful timing and aiming of the transfer ports such that the fresh gas has minimal contact with the exiting exhaust which it is pushing ahead of itself.

No comments: